Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Commun Biol ; 6(1): 1197, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001233

RESUMO

Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.


Assuntos
Rauwolfia , Rauwolfia/genética , Rauwolfia/metabolismo , Monoterpenos , Alcaloides Indólicos/metabolismo
3.
Molecules ; 28(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299031

RESUMO

The composition of bioactive polyphenols from grape canes, an important viticultural byproduct, was shown to be varietal-dependent; however, the influence of soil-related terroir factors remains unexplored. Using spatial metabolomics and correlation-based networks, we investigated how continuous changes in soil features and topography may impact the polyphenol composition in grape canes. Soil properties, topography, and grape cane extracts were analyzed at georeferenced points over 3 consecutive years, followed by UPLC-DAD-MS-based metabolomic analysis targeting 42 metabolites. Principal component analyses on intra-vintage metabolomic data presented a good reproducibility in relation to geographic coordinates. A correlation-driven approach was used to explore the combined influence of soil and topographic variables on metabolomic responses. As a result, a metabolic cluster including flavonoids was correlated with elevation and curvature. Spatial metabolomics driven by correlation-based networks represents a powerful approach to spatialize field-omics data and may serve as new field-phenotyping tool in precision agriculture.


Assuntos
Vitis , Vitis/metabolismo , Polifenóis/metabolismo , Reprodutibilidade dos Testes , Metabolômica , Solo
4.
Genome Biol Evol ; 14(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300641

RESUMO

The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.


Assuntos
Plantas Medicinais , Voacanga , Plantas Medicinais/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala , Sementes , Genoma de Planta
5.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200869

RESUMO

Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.


Assuntos
Vinca , Monoterpenos , Filogenia , Evolução Biológica , Fenótipo
7.
Methods Mol Biol ; 2505: 113-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732941

RESUMO

Increased affordability and availability of high-throughput next-generation sequencing (NGS) technologies have resulted in an explosion of available RNA-seq data, igniting a variety of data-mining methodologies, valuable for plant-specialized biosynthetic pathway discovery. When combined with traditional homology-based annotations, these methods can facilitate short-listing candidate genes for downstream functional validation screenings. Genes related to common pathways often display homogenous expression patterns across different tissue types and experimental conditions. Here, we describe bioinformatic protocols for exploiting such coexpression to shortlist candidate genes of the well-described monoterpene indole alkaloid (MIA) pathway of Catharanthus roseus. These methods aim to inspire researchers to utilize this publicly available RNA-seq treasure trove to guide their own endeavors in the characterization of missing steps in plant metabolic pathways.


Assuntos
Catharanthus , Vias Biossintéticas/genética , Catharanthus/genética , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , RNA-Seq
8.
Methods Mol Biol ; 2505: 131-140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732942

RESUMO

Elucidation of biological pathways leading to specialized metabolites remains a complex task. It is however a mandatory step to allow bioproduction into heterologous hosts. Many steps have already been identified using conventional approaches, enlarging the space of known possible chemical steps. In the recent past years, identification of missing steps has been fueled by the generation of genomic and transcriptomic data for nonmodel species. The analysis of gene expression profiles has revealed that in many cases, genes encoding enzymes involved in the same biosynthetic pathways are coexpressed across different tissue types and environmental conditions. Hence, coexpressed studies, either in the form of differential gene expression, gene coexpression network, or unsupervised clustering methods, have helped deciphering missing steps to complete knowledge on biosynthetic pathways. Already identified biosynthetic steps can be used as baits to capture the remaining unknown steps. The present protocol shows how supervised machine learning in the form of artificial neural networks (ANNs) can efficiently classify genes as specialized metabolism related or not according to their expression levels. Using Catharanthus roseus as an example, we show that ANN trained on a minimal set of bait genes results in many true positives (correctly predicted genes) while keeping false positives low (containing possible candidate genes).


Assuntos
Catharanthus , Monoterpenos , Vias Biossintéticas , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Redes Neurais de Computação , Proteínas de Plantas/metabolismo
9.
Methods Mol Biol ; 2505: 223-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732948

RESUMO

DNA methylation is the most studied epigenetic mark in both plants and animals. The gold standard for assaying genome-wide DNA methylation at single-base resolution is whole-genome bisulfite sequencing (WGBS). Here, we describe an improved procedure for WGBS and original bioinformatic workflows applied to unravel tissue-specific variations of the methylome in relation to gene expression and accumulation of secondary metabolites in the medicinal plant Catharanthus roseus.


Assuntos
Epigenoma , Sequenciamento de Nucleotídeos em Larga Escala , Animais , DNA/genética , Metilação de DNA , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Especificidade de Órgãos/genética , Análise de Sequência de DNA/métodos , Sulfitos
10.
Plant Cell Rep ; 41(7): 1499-1513, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35385991

RESUMO

KEY MESSAGE: pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes. Intragenesis is an important alternative to transgenesis to produce modified plants containing native DNA only. A key point to develop such a strategy is the availability of regulatory sequences controlling the expression of the gene of interest. With the aim of finding apple gene promoters either inducible by the fire blight pathogen Erwinia amylovora (Ea) or moderately constitutive, we focused on polyphenoloxidase genes (PPO). These genes encode oxidative enzymes involved in many physiological processes and have been previously shown to be upregulated during the Ea infection process. We found ten PPO and two PPO-like sequences in the apple genome and characterized the promoters of MdPPO16 (pPPO16) and MdKFDV02 PPO-like (pKFDV02) for their potential as Ea-inducible and low-constitutive regulatory sequences, respectively. Expression levels of reporter genes fused to these promoters and transiently or stably expressed in apple were quantified after various treatments. Unlike pKFDV02 which displayed a variable activity, pPPO16 allowed a fast and strong expression of transgenes in apple following Ea infection in a Type 3 Secretion System dependent manner. Altogether our results does not confirmed pKFDV02 as a constitutive and weak promoter whereas pPPO16, the first Ea-inducible promoter cloned from apple, can be a useful component of intragenic strategies to create fire blight resistant apple genotypes.


Assuntos
Erwinia amylovora , Malus , Erwinia amylovora/genética , Genótipo , Malus/genética , Doenças das Plantas/genética , Regiões Promotoras Genéticas/genética
11.
Trends Pharmacol Sci ; 43(7): 542-545, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35151502

RESUMO

Recent chromosome-scale genomes from prominent medicinal plants have provided unprecedented insight into the architecture and evolution of some prominent metabolic pathways. These new technologies also facilitate the identification of plant drug biosynthetic genes and would likely accelerate the development of new bioengineering procedures to secure the supply of important plant-derived pharmaceuticals.


Assuntos
Redes e Vias Metabólicas , Plantas Medicinais , Cromossomos , Humanos
12.
F1000Res ; 11: 1541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761838

RESUMO

The Madagascar periwinkle, Catharanthus roseus, belongs to the Apocynaceae family. This medicinal plant, endemic to Madagascar, produces many important drugs including the monoterpene indole alkaloids (MIA) vincristine and vinblastine used to treat cancer worldwide. Here, we provide a new version of the C. roseus genome sequence obtained through the combination of Oxford Nanopore Technologies long-reads and Illumina short-reads. This more contiguous assembly consists of 173 scaffolds with a total length of 581.128 Mb and an N50 of 12.241 Mb. Using publicly available RNAseq data, 21,061 protein coding genes were predicted and functionally annotated. A total of 42.87% of the genome was annotated as transposable elements, most of them being long-terminal repeats. Together with the increasing access to MIA-producing plant genomes, this updated version should ease evolutionary studies leading to a better understanding of MIA biosynthetic pathway evolution.


Assuntos
Catharanthus , Plantas Medicinais , Catharanthus/genética , Catharanthus/metabolismo , Genoma de Planta , Plantas Medicinais/genética , Plantas Medicinais/metabolismo
13.
Comput Struct Biotechnol J ; 19: 3659-3663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257844

RESUMO

Camptothecin is a clinically important monoterpene indole alkaloid (MIAs) used for treating various cancers. Currently, the production of this biopharmaceutical hinges on its extraction from camptothecin-producing plants, leading to high market prices and supply bottlenecks. While synthetic biology combined with metabolic approaches could represent an attractive alternative approach to manufacturing, it requires firstly a complete biosynthetic pathway elucidation, which is, unfortunately, severely missing in species naturally accumulating camptothecin. This knowledge gap can be attributed to the lack of high-quality genomic resources of medicinal plant species. In such a perspective, Yamazaki and colleagues produced the first described and experimentally validated chromosome-level plant genome assembly of Ophiorrhiza pumila, a prominent source plant of camptothecin for the pharmaceutical industry. More specifically, they have developed a method incorporating Illumina reads, PacBio single-molecule reads, optical mapping and Hi-C sequencing, followed by the experimental validation of contig orientation within scaffolds, using fluorescence in situ hybridization (FISH) analysis. This relevant strategy resulted in the most contiguous and complete de novo plant reference genome described to date, which can streamline the sequencing of new plant genomes. Further mining approaches, including integrative omics analysis, phylogenetics, gene cluster evaluation and comparative genomics were successfully used to puzzle out the evolutionary origins of MIA metabolism and revealed a short-list of high confidence MIA biosynthetic genes for functional validation.

14.
Plant Physiol ; 185(3): 836-856, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793899

RESUMO

Deglycosylation is a key step in the activation of specialized metabolites involved in plant defense mechanisms. This reaction is notably catalyzed by ß-glucosidases of the glycosyl hydrolase 1 (GH1) family such as strictosidine ß-d-glucosidase (SGD) from Catharanthus roseus. SGD catalyzes the deglycosylation of strictosidine, forming a highly reactive aglycone involved in the synthesis of cytotoxic monoterpene indole alkaloids (MIAs) and in the crosslinking of aggressor proteins. By exploring C. roseus transcriptomic resources, we identified an alternative splicing event of the SGD gene leading to the formation of a shorter isoform of this enzyme (shSGD) that lacks the last 71-residues and whose transcript ratio with SGD ranges from 1.7% up to 42.8%, depending on organs and conditions. Whereas it completely lacks ß-glucosidase activity, shSGD interacts with SGD and causes the disruption of SGD multimers. Such disorganization drastically inhibits SGD activity and impacts downstream MIA synthesis. In addition, shSGD disrupts the metabolic channeling of downstream biosynthetic steps by hampering the recruitment of tetrahydroalstonine synthase in cell nuclei. shSGD thus corresponds to a pseudo-enzyme acting as a regulator of MIA biosynthesis. These data shed light on a peculiar control mechanism of ß-glucosidase multimerization, an organization common to many defensive GH1 members.


Assuntos
Processamento Alternativo/fisiologia , Catharanthus/metabolismo , Processamento Alternativo/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Vinca/metabolismo
15.
ACS Synth Biol ; 10(2): 286-296, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33450150

RESUMO

Trihydroxycinnamoyl spermidines (THCSpd) are plant specialized metabolites with promising pharmacological activities as antifungals, antibacterial, antiviral, and antidepressant drugs. However, their characterization and potential pharmaceutical exploitation are greatly impaired by the sourcing of these compounds, restricted to the pollen of core Eudicot plant species. In this work, we developed a precursor-directed biosynthesis of THCSpd in yeast using a dual enzymatic system based on 4-coumarate-CoA ligases (4CL) and spermidine N-hydroxycinnamoyltransferases (SHT). The system relies on the yeast endogenous spermidine pool and only requires hydroxycinnamic acids as exogenous precursors. By exploring 4CL isoforms and SHT diversity among plants, we have driven the production of 8 natural THCSpd, using single or mixed hydroxycinnamic acid precursors. Substrate promiscuities of 4CL and SHT were genuinely exploited to produce 8 new-to-nature THCSpd from exotic hydroxycinnamic and dihydrohydroxycinnamic acids, together with 3 new-to-nature THCSpd containing halogenated hydroxycinnamoyl moieties. In this work, we established a versatile and modular biotechnological production platform allowing the tailor-made THCSpd synthesis, constituting pioneer metabolic engineering for access to these valuable natural products.


Assuntos
Aciltransferases/metabolismo , Ácidos Cumáricos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/biossíntese , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Coenzima A Ligases/metabolismo , Plântula/enzimologia
16.
Biomolecules ; 10(12)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255314

RESUMO

The lesser periwinkle Vinca minor accumulates numerous monoterpene indole alkaloids (MIAs) including the vasodilator vincamine. While the biosynthetic pathway of MIAs has been largely elucidated in other Apocynaceae such as Catharanthus roseus, the counterpart in V. minor remains mostly unknown, especially for reactions leading to MIAs specific to this plant. As a consequence, we generated a comprehensive V. minor transcriptome elaborated from eight distinct samples including roots, old and young leaves exposed to low or high light exposure conditions. This optimized resource exhibits an improved completeness compared to already published ones. Through homology-based searches using C. roseus genes as bait, we predicted candidate genes for all common steps of the MIA pathway as illustrated by the cloning of a tabersonine/vincadifformine 16-O-methyltransferase (Vm16OMT) isoform. The functional validation of this enzyme revealed its capacity of methylating 16-hydroxylated derivatives of tabersonine, vincadifformine and lochnericine with a Km 0.94 ± 0.06 µM for 16-hydroxytabersonine. Furthermore, by combining expression of fusions with yellow fluorescent proteins and interaction assays, we established that Vm16OMT is located in the cytosol and forms homodimers. Finally, a gene co-expression network was performed to identify candidate genes of the missing V. minor biosynthetic steps to guide MIA pathway elucidation.


Assuntos
Catharanthus/genética , Regulação da Expressão Gênica de Plantas/genética , Alcaloides de Triptamina e Secologanina/metabolismo , Vinca/genética , Vinca/metabolismo , Catharanthus/metabolismo , Transcriptoma
17.
Comput Struct Biotechnol J ; 18: 3468-3483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294141

RESUMO

Scedosporium species rank second among the filamentous fungi colonizing the lungs of patients with cystic fibrosis (CF). Apart from the context of immunodeficiency (lung transplantation), the colonization of the CF airways by these fungi usually remains asymptomatic. Why the colonization of the lower airways by Scedosporium species is fairly tolerated by CF patients while these fungi are able to induce a marked inflammatory reaction in other clinical contexts remains questionable. In this regards, we were interested here in exploring the transcriptional reprogramming that accompanies the adaptation of these fungi to the particular microenvironment encountered in the airways of CF patients. Cultivation of Scedosporium apiospermum in conditions mimicking the microenvironment in the CF lungs was shown to induce marked transcriptional changes. This includes notably the down-regulation of enzymes involved in the synthesis of some major components of the plasma membrane which may reflect the ability of the fungus to evade the host immune response by lowering the biosynthesis of some major antigenic determinants or inhibiting their targeting to the cell surface through alterations of the membrane fluidity. In addition, this analysis revealed that some genes encoding enzymes involved in the biosynthesis of some mycotoxins were down-regulated suggesting that, during the colonization process, S. apiospermum reduces the production of some toxic secondary metabolites to prevent exacerbation of the immune system response. Finally, a strong up-regulation of many genes encoding enzymes involved in the degradation of aromatic compounds was observed, suggesting that these catabolic properties would predispose the fungus to particular patterns of human pathogenicity. Together these data provide new insights into the adaptative mechanisms developed by S. apiospermum in the CF lungs, which should be considered for identification of potential targets for drug development, but also for the experimental conditions to be used in in vitro susceptibility testing of clinical isolates to current antifungals.

18.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825765

RESUMO

Catharanthus roseus produces a wide spectrum of monoterpene indole alkaloids (MIAs). MIA biosynthesis requires a tightly coordinated pathway involving more than 30 enzymatic steps that are spatio-temporally and environmentally regulated so that some MIAs specifically accumulate in restricted plant parts. The first regulatory layer involves a complex network of transcription factors from the basic Helix Loop Helix (bHLH) or AP2 families. In the present manuscript, we investigated whether an additional epigenetic layer could control the organ-, developmental- and environmental-specificity of MIA accumulation. We used Whole-Genome Bisulfite Sequencing (WGBS) together with RNA-seq to identify differentially methylated and expressed genes among nine samples reflecting different plant organs and experimental conditions. Tissue specific gene expression was associated with specific methylation signatures depending on cytosine contexts and gene parts. Some genes encoding key enzymatic steps from the MIA pathway were found to be simultaneously differentially expressed and methylated in agreement with the corresponding MIA accumulation. In addition, we found that transcription factors were strikingly concerned by DNA methylation variations. Altogether, our integrative analysis supports an epigenetic regulation of specialized metabolisms in plants and more likely targeting transcription factors which in turn may control the expression of enzyme-encoding genes.


Assuntos
Catharanthus/crescimento & desenvolvimento , Catharanthus/genética , Catharanthus/metabolismo , Metilação de DNA , Alcaloides Indólicos/metabolismo , Catharanthus/citologia , Enzimas/genética , Enzimas/metabolismo , Epigenoma , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Fotossíntese/genética , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/citologia , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
19.
Methods Mol Biol ; 2172: 183-197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557370

RESUMO

Virus-induced gene silencing (VIGS) is a fast and efficient tool to investigate gene function in plant as an alternative to knock down/out transgenic lines, especially in plant species difficult to transform and challenging to regenerate such as perennial woody plants. In apple tree, a VIGS vector has been previously developed based on the Apple latent spherical virus (ALSV) and an efficient inoculation method has been optimized using biolistics. This report described detailed step-by-step procedure to design and silence a gene of interest (GOI) in apple tree tissues using the ALSV-based vector.


Assuntos
Inativação Gênica/fisiologia , Vírus de Plantas/patogenicidade , Biolística , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Malus/metabolismo , Malus/virologia , Vírus de Plantas/genética , Secoviridae/genética , Secoviridae/patogenicidade
20.
Plants (Basel) ; 9(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272573

RESUMO

The Madagascar periwinkle (Catharanthus roseus) synthesizes the highly valuable monoterpene indole alkaloids (MIAs) through a long metabolic route initiated by the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. In leaves, a complex compartmentation of the MIA biosynthetic pathway occurs at both the cellular and subcellular levels, notably for some gene products of the MEP pathway. To get a complete overview of the pathway organization, we cloned four genes encoding missing enzymes involved in the MEP pathway before conducting a systematic analysis of transcript distribution and protein subcellular localization. RNA in situ hybridization revealed that all MEP pathway genes were coordinately and mainly expressed in internal phloem-associated parenchyma of young leaves, reinforcing the role of this tissue in MIA biosynthesis. At the subcellular level, transient cell transformation and expression of fluorescent protein fusions showed that all MEP pathway enzymes were targeted to plastids. Surprisingly, two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase initially exhibited an artifactual aggregated pattern of localization due to high protein accumulation. Immunogold combined with transmission electron microscopy, transient transformations performed with a low amount of transforming DNA and fusion/deletion experiments established that both enzymes were rather diffuse in stroma and stromules of plastids as also observed for the last six enzymes of the pathway. Taken together, these results provide new insights into a potential role of stromules in enhancing MIA precursor exchange with other cell compartments to favor metabolic fluxes towards the MIA biosynthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...